138 research outputs found

    Model-based computation of total stressed blood volume from a preload reduction manoeuvre

    Full text link
    peer reviewedTotal stressed blood volume is an important parameter for both doctors and engineers. From a medical point of view, it has been associated with the success or failure of fluid therapy, a primary treatment to manage acute circulatory failure. From an engineering point of view, it dictates the cardiovascular system’s behavior in changing physiological situations. Current methods to determine this parameter involve repeated phases of circulatory arrests followed by fluid administration. In this work, a more straightforward method is developed using data from a preload reduction manoeuvre. A simple six-chamber cardiovascular system model is used and its parameters are adjusted to pig experimental data. The parameter adjustment process has three steps: (1) compute nominal values for all model parameters; (2) determine the five most sensitive parameters; and (3) adjust only these five parameters. Stressed blood volume was selected by the algorithm, which emphasizes the importance of this parameter. The model was able to track experimental trends with a maximal root mean squared error of 29.2%. Computed stressed blood volume equals 486 ± 117 ml or 15.7 ± 3.6 ml/kg, which matches previous independent experiments on pigs, dogs and humans. The method proposed in this work thus provides a simple way to compute total stressed blood volume from usual hemodynamic data

    Effects of increased afterload on left ventricular performance and mechanical efficiency are not baroreflex-mediated

    Full text link
    peer reviewedObjective: To assess baroreflex intervention during increase in left ventricular afterload, we compared the effects of aortic banding on the intact cardiovascular system and under hexamethonium infusion. Methods: Six open-chest pigs, instrumented for measurement of aortic pressure and flow, left ventricular pressure and volume, were studied under pentobarbital-sufentanil anesthesia. Vascular arterial properties were estimated with a four-element windkessel model. Left ventricular contractility was assessed by the slope of end-systolic pressure-volume relationship. Results: The effects of aortic banding on mechanical aortic properties were unaffected by autonomic nervous system inhibition. However, increase in peripheral arterial vascular resistance and in heart rate were prevented by hexamethonium. Aortic banding increased left ventricular contractility and stroke work. Left ventricular-arterial coupling remained unchanged, but mechanical efficiency was impaired. These ventricular changes were independent of baroreflex integrity. Conclusions: Our results demonstrate that an augmentation in afterload has a composite effect on left ventricular function. Left ventricular performance is increased, as demonstrated by increase in contractility and stroke work, but mechanical efficiency is decreased. These changes are observed independently of baroreflex integrity. Such mechanisms of autoregulation, independent of the autonomic nervous system, are of paramount importance in heart transplant patients. (C) 2003 Elsevier B.V. All fights reserved

    Comparison between single-beat and multiple-beat methods for estimation of right ventricular contractility.

    Full text link
    OBJECTIVE: It was investigated whether pharmacologically induced changes in right ventricular contractility can be detected by a so-called "single-beat" method that does not require preload reduction. DESIGN: Prospective animal research. SETTING: Laboratory at a large university medical center. SUBJECTS: Eight anesthetized pigs. INTERVENTIONS: End-systolic elastance values obtained by a recently proposed single-beat method (Eessb) were compared with those obtained using the reference multiple-beat method (Eesmb). MEASUREMENTS AND MAIN RESULTS: Administration of dobutamine increased Eesmb from 1.6 +/- 0.3 to 3.8 +/- 0.5 mm Hg/mL (p =.001), whereas there was only a trend toward an increase in Eessb from 1.5 +/- 0.2 to 1.7 +/- 0.4 mm Hg/mL. Esmolol decreased Eesmb from 1.7 +/- 0.3 to 1.1 +/- 0.2 mm Hg/mL (p =.006), whereas there was only a trend for a decrease in Eessb from 1.5 +/- 0.2 to 1.3 +/- 0.1. CONCLUSIONS: The present method using single-beat estimation to assess right ventricular contractility does not work as expected, since it failed to detect either increases or decreases in right ventricular contractility induced by pharmacologic interventions.Peer reviewe

    Mathematical modeling of extracorporeal CO2 removal

    Full text link
    Extra¬cor¬poreal CO2 removal devices (ECCO2R) can be used in clinics to decarboxylate blood externally for patients suffering from pulmonary insufficiencies like acute respiratory distress syndrome. In this work, a model of the respiratory system coupled with such a device is proposed to analyze the decrease of CO2 partial pressure in blood as a function of blood flow through the device. This model provides a mathematical tool which could help clinicians to choose the optimal settings of ECCO2R.Mathematical modeling and optimization of the use of cardiopulmonary assistances in intensive care unit

    The first wave of COVID-19 in Intensive care

    Full text link
    In December 2019, in Wuhan, a new human infectious pathology was born, COVID-19, consisting above all in pneumoniae, induced by the coronavirus named SARS-CoV-2 because of the respiratory distress it caused (SARS for severe acute respiratory syndrome, and CoV for Coronavirus). A real health and planetary crisis has appeared, much more substantial than that linked to SARS-CoV-1 in 2002-2004 and to MERS-CoV (Middle East Respiratory Syndrome Coronavirus) in 2012. In addition to respiratory damage that can be dramatic, this pathology is complicated by the frequency of cardiovascular, renal and coagulation diseases. Health care systems have had to adapt urgently, in the absence of hindsight from the patho- logy, and without effective therapeutic weapons. Through this review of the literature, we detail our local practices for the overall management of patients hospitalized in Intensive care

    Automatized lung disease quantification in patients with COVID-19 as a predictive tool to assess hospitalization severity

    Full text link
    peer reviewedThe pandemic of COVID-19 led to a dramatic situation in hospitals, where staff had to deal with a huge number of patients in respiratory distress. To alleviate the workload of radiologists, we implemented an artificial intelligence (AI) - based analysis named CACOVID-CT, to automatically assess disease severity on chest CT scans obtained from those patients. We retrospectively studied CT scans obtained from 476 patients admitted at the University Hospital of Liege with a COVID-19 disease. We quantified the percentage of COVID-19 affected lung area (% AA) and the CT severity score (total CT-SS). These quantitative measurements were used to investigate the overall prognosis and patient outcome: hospital length of stay (LOS), ICU admission, ICU LOS, mechanical ventilation, and in-hospital death. Both CT-SS and % AA were highly correlated with the hospital LOS, the risk of ICU admission, the risk of mechanical ventilation and the risk of in-hospital death. Thus, CAD4COVID-CT analysis proved to be a useful tool in detecting patients with higher hospitalization severity risk. It will help for management of the patients flow. The software measured the extent of lung damage with great efficiency, thus relieving the workload of radiologists

    Arterial dP/dtmax accurately reflects left ventricular contractility during shock when adequate vascular filling is achieved

    Get PDF
    Background: Peak first derivative of femoral artery pressure (arterial dP/dt max) derived from fluid-filled catheter remains questionable to assess left ventricular (LV) contractility during shock. The aim of this study was to test if arterial dP/dt maxis reliable for assessing LV contractility during various hemodynamic conditions such as endotoxin-induced shock and catecholamine infusion.Methods: Ventricular pressure-volume data obtained with a conductance catheter and invasive arterial pressure obtained with a fluid-filled catheter were continuously recorded in 6 anaesthetized and mechanically ventilated pigs. After a stabilization period, endotoxin was infused to induce shock. Catecholamines were transiently administrated during shock. Arterial dP/dt maxwas compared to end-systolic elastance (Ees), the gold standard method for assessing LV contractility.Results: Endotoxin-induced shock and catecholamine infusion lead to significant variations in LV contractility. Overall, significant correlation (r = 0.51; p < 0.001) but low agreement between the two methods were observed. However, a far better correlation with a good agreement were observed when positive-pressure ventilation induced an arterial pulse pressure variation (PPV) ≤ 11% (r = 0.77; p < 0.001).Conclusion: While arterial dP/dt maxand Ees were significantly correlated during various hemodynamic conditions, arterial dP/dt maxwas more accurate for assessing LV contractility when adequate vascular filling, defined as PPV ≤ 11%, was achieved. © 2012 Morimont et al; licensee BioMed Central Ltd
    corecore